Ricci iteration on homogeneous spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

Flows on Homogeneous Spaces

We present a new approach to metric Diophantine approximation on manifolds based on the correspondence between approximation properties of numbers and orbit properties of certain ows on homogeneous spaces. This approach yields a new proof of a conjecture of Mahler, originally settled by V. G. Sprind zuk in 1964. We also prove several related hypotheses of Baker and Sprind zuk formulated in 1970...

متن کامل

localization operators on homogeneous spaces

let $g$ be a locally compact group, $h$ be a compact subgroup of $g$ and $varpi$ be a representation of the homogeneous space $g/h$ on a hilbert space $mathcal h$. for $psi in l^p(g/h), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $l_{psi,zeta} $ on $mathcal h$ and we show that it is a bounded operator. moreover, we prove that the localizat...

متن کامل

Ricci-flat supertwistor spaces

We show that supertwistor spaces constructed as a Kähler quotient of a hyperkähler cone (HKC) with equal numbers of bosonic and fermionic coordinates are Ricci-flat, and hence, Calabi-Yau. We study deformations of the supertwistor space induced from deformations of the HKC. We also discuss general infinitesimal deformations that preserve Ricci-flatness.

متن کامل

On Low Dimensional Ricci Limit Spaces

We call a Gromov-Hausdorff limit of complete Riemannian manifolds with a lower bound of Ricci curvature a Ricci limit space. In this paper, we prove that any Ricci limit space has integral Hausdorff dimension provided that its Hausdorff dimension is not greater than two. We also classify one-dimensional Ricci limit spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2019

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/7498